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Steady and unsteady velocity components over a backward-facing circular arc are 
measured by laser-Doppler velocimetry. A periodic disturbance is added to the mean 
flow and the response of unsteady separation is investigated. Special attention is 
given to the distribution and the flux of vorticity. 

1. Introduction 
Aerodynamicists are interested in the phenomenon of separation because it 

controls the efficiency of lifting surfaces as well as the behaviour of separated flows 
and therefore phenomena like steady or unsteady stall. The study of unsteady 
separation has generated some controversies, mostly because of the widely varied 
tools of investigation and quite often because of confusing terminology. The 
significance of the phenomenon lies in its interaction with the entire flow field. Its 
properties may explain the local structure of the flow but these should only be viewed 
as a step towards the understanding and eventually the prediction of the global 
effects. In this paper we discuss our experimental efforts in this direction. We study 
how vorticity generated in the boundary layer is convected and shed. Also we 
examine the interaction of the separated free shear layer with the dead water and the 
rigid wall. 

Experimental work on unsteady separation has been initiated in the past few 
decades, following the pioneering work of Sears (1956), Moore (1958) and Rott 
(1956). The experimental work of Vidal (1959) and Ludwig (1964) pertains only to 
steady flow, and the work of Despard & Miller (1971) is confined to high-frequency 
oscillatory flow. Our knowledge at  the beginning of the 1970s about this complex 
phenomenon was therefore remarkably narrow and there was a serious need for more 
intensive experimental investigation. Some progress was achieved by methods of 
flow visualization, and by hot-wire-anemometer techniques. Such methods have 
been employed by Schraub et al. (1965), WBrlB (1973), Ruiter, Nagib & Fejer (1971) 
and McCroskey (1971) to study unsteady viscous flow phenomena. In  a more recent 
effort, Carr, McAlister & McCroskey (1977) employed a variety of sensing devices, 
ranging from flow-visualization methods (tufts, smoke) to pressure or velocity 
measuring methods (pressure transducers, hot-wire anemometers, etc.) to study the 
phenomenon of unsteady stall. In the present study, pressure and velocity signatures 
throughout a period of oscillation are given for different stations on a backward- 
facing curved surface. The results are compared with flow-visualization data. In all 
the recent contributions, with the exception of Despard & Miller (1971), the specific 
cases considered and the scale of the models were designed for a study of the entire 
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flow field. The boundary layers were very thin and it was difficult to study the 
features of the unsteady boundary layer and, in particular, separation. Moreover, in 
most cases, the boundary layer was turbulent upstream of separation. Detailed 
investigations of the flow properties in the immediate neighbourhood of unsteady 
turbulent separation were reported by Simpson (1981). 

The present group attempted to examine more closely the immediate neigh- 
bourhood of unsteady laminar separation. In the first phase of the work (Telionis 
& Koromilas 1978; Koromilas & Telionis 1980), emphasis was given to the 
qualitative aspects of the flow. This was accomplished by flow-visualization methods 
in water-glycerin mixtures to achieve thick boundary layers with not very small 
velocities. Steady flows over moving surfaces were first examined in an open channel. 
Unsteady effects, transient and oscillatory, were later investigated in a closed water 
tunnel designed and constructed for this purpose, with two different systems of 
pressure-disturbance generation. Later, Mezaris & Telionis (1980) obtained detailed 
laser-Doppler velocimetry (LDV) measurements over a rearward-facing circular arc. 
In this work, unsteadiness was introduced by a flap pulsating over the circular arc. 
The model employed in the present study is the same as that of Mezaris & Telionis 
and will be described in the main body of the paper. 

Two very interesting pieces of work have appeared in the literature recently (Varty 
& Currie 1984; Didden & Ho 1985). Varty & Currie employed a one-component laser- 
Doppler anemometer to measure the velocity parallel to the wall and calculated the 
other component using the continuity equation. The present work goes beyond the 
accomplishments of Varty & Currie (1984) and Mezaris & Telionis (1980) by 
employing simultaneous, two-component measuring techniques and examining 
both steady and unsteady flows. The results are reduced and analysed in a manner 
similar to the one suggested by Varty & Currie. Didden & Ho studied the separation 
induced by periodically generated ring vortices in pulsed impinging jets. They 
employed hot wires and pressure transducers to create a complete documentation of 
the flow field. The work of Varty & Currie was concerned only with steady flow. In 
all the flows studied by Mezaris & Telionis (1980), Didden & Ho (1985) and the 
present authors, the flow is periodic. However, in the case considered by Didden & 
Ho, the separated region is swept away completely and then separation creeps back 
from downstream. This provided a unique case of downstream-moving separation 
which is very little understood and very difficult to capture in the laboratory. In the 
present report, the excursions of separation are small, and the periodic response of 
the free shear layer dominates the flow field. 

It is well known that, for a flat plate, the velocity amplitude ratio is scaled by the 
frequency parameter k = wx/U, ,  where o, x and U ,  are the frequency, the distance 
along the wall and the free-stream velocity, respectively (Lighthill 1954). With 
increasing k ,  the amplitude profiles have been proved analytically and experi- 
mentally (Telionis 1979 ; McCroskey 1977) to have smaller overshoots, while the 
maxima approach the wall. The oscillatory part of the flow tends to become plug flow 
and the Stokes layer is confined closer and closer to the wall. This is not the case if 
the adverse pressure gradient increases with x (Mezaris & Telionis 1980; Mezaris 
et al. 1987). In fact, the data of Mezaris & Telionis indicate overshoots about 10 times 
larger than - the amplitude of the outer flow. 

In the present paper we introduce the disturbance in the oncoming stream rather 
than through a pulsating flap. We then examine more carefully the flow in the 
vicinity of separation by a more powerful data-acquisition system, which permits 
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FIQURE 1. The VPI water tunnel showing the recent modifications. (a) A rotating vane drive 
a variable speed motor; ( b )  a by-pass system with a control valve. 

frequency domain analysis as well as Fourier series expansions of all waveforms. 
Also, the vorticity field is examined and instantaneous vorticity contours are 
displayed. 

2. Facilities and the model 
To conduct the research reported in this paper, some modifications and additions 

to our facilities were necessary. The basic task was to convert the tunnel to an 
unsteady water tunnel. To control the mean flow, a rotating vane was installed 
immediately above the test section as shown in figure 1. This vane was coupled to a 
HELLER d.c. motor with variable speed control. The unit automatically controls 
the speed to within f0.5% of the set value. It is also equipped with an optical 
encoder which is interfaced directly with the laboratory computer. 

A very significant factor in studies of unsteady aerodynamics is the amplitude of 
oscillation. To the knowledge of the present authors, in all facilities employing some 
mechanical method for control of the frequency of oscillation, the amplitude is a 
function of the frequency. A separate system is necessary if one desires to control 
independently both the amplitude and the frequency of the oscillation. In  our case 
this was accomplished by a bypass pipe and a bypass valve as shown in figure 1 .  The 
position of this valve controls the efficiency of the rotating vane. Charts of the 
performance of these controls have been constructed (Telionis et al. 1986). 

Any periodicity externally added to a tunnel generates free-stream turbulence. 
Many existing unsteady-flow facilities operate with turbulence levels of the order of 
1-2 YO. Careful studies require much lower turbulence levels. To calm the flow in our 
tunnel (Schubauer, Spangenberg & Klebanoff 1948; Dryden & Abbott 1948; Loehrke 
& Nagib 1976; Wigeland, Ahmed & Nagib 1978; Tan-Atichat, Nagib & Loehrke 1982; 
H. M. Nagib 1984, private communication), we installed in the settling chamber a 
second set of finer honeycombs and three sets of fine screens. The periodic 
disturbance generated by the rotating vane ranges in amplitude from 3 to 17 % peak 
to peak and in frequency from 0.2 to 8 Hz. The lowest turbulence level measured by 
a laser-Doppler velocimeter was about 0.4 YO. 
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FIGURE 2. The circular arc with the two coordinate systems and 19 measuring stations. The 
distance between two stations on the wall from 3 and on is 5 mm. The radius of the circular arc is 
450 mm. 

Experiments were conducted on a model similar to that of Mezaris & Telionis 
(1980) and Mezaris et al. (1987). A convergence of the test section led the flow 
between two flat plates, which are slightly diverging to account for the two growing 
boundary layers. At the entrance of the convergence, the boundary layers growing 
on the walls of the tunnel were sucked. New boundary layers started developing on 
the convergence. Measurements on the walls of the flat plates indicate (Mezaris & 
Telionis 1980) that the laminar boundary layers are very nearly Blasius layers. 
Further downstream, the top surface diverged to generate a region of adverse 
pressure gradient. The bottom plate continued straight. In this way the separated 
region was not affected by mirror-image separation. It is recalled that flows about 
symmetric bodies, for example a circular cylinder, are controlled by the interaction 
of two shear layers with opposite signs of vorticity, which eventually lead to periodic 
shedding of large-scale vortices. The situation is different in the case of an airfoil a t  
an angle of attack, whereby the separating flow over the suction side develops with 
little or no influence of the trailing-edge vorticity. This is exactly the type of flow 
simulated by our rig. Measurements were conducted on the diverging section which 
has the shape of a circular arc as shown schematically in figure 2. 

Three-dimensional effects play a significant role in the phenomena under 
consideration. For a careful experimental study, i t  is imperative to address two basic 
issues, mainly (i) possible three-dimensional effects which the particular experimental 
rig introduces but which are foreign to the phenomenon under consideration ; (ii) 
three-dimensional effects that are actually present in the problem under con- 
sideration, but owing to the design of the experiment are artificially eliminated. 

To address the first issue, extensive measurements were obtained along the span 
of the model. In addition, dye visualization studies (Mathioulakis 1985) were 
conducted along planes parallel to the plane of symmetry. Both measurements and 
flow visualizations were triggered to provide phase-locked information for all phases 
of the periodic phenomenon. It was proved that three-dimensionality effects are 
confined to about 1.2-1.3 boundary-layer thicknesses next to the sidewalls. In  the 
streamwise direction deviations of order 7 % appear first a t  about 16-20 boundary- 
layer thicknesses downstream of the location of mean zero wall shear. The data 
reported in the present paper were obtained in a domain well within the two- 
dimensional region of the field. 

Many recent contributions have appeared on the three-dimensional effects of 
separating flows over two-dimensional geometrical configurations. Mueller, Win- 
kelmann and their associates (Arena & Mueller 1978; Winkelmann & Barlow 1980; 
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Winkelmann, Ngo & DeSaife 1982) have demonstrated that the line of separation 
itself it not straight and parallel to the generators of the model as one would expect. 
Instead, it displays a spatial periodicity which in oil visualizations resembles, and is 
known as, mushroom separation. Such phenomena were obtained on finite-span 
wings and it is possible that the three-dimensional effects are a response to the 
influence of the tips. Moreover, the wavelength is much larger than the distance from 
stagnation to separation. It is therefore believed that the basic two-dimensional 
mechanisms under investigation here control large portions of this type of separation 
as well. 

Equally significant are three-dimensional phenomena which develop along the free 
shear layer, downstream of separation. Gerrard (1978) first reported the existence of 
three-dimensional structures in the form of ‘knots’ and ‘fingers’ in the wake of 
cylinders. Konrad (1976) and Bernal (1981) have also identified streamwise ‘braid ’ 
structures in nominally two-dimensional free shear layers. Ho & Huerre (1984) 
suggest that such phenomena initially develop as two-dimensional instabilities 
(Michalke 1965), which later amplify to a level which brings them into a region of 
three-dimensional instabilities. A very careful study of the phenomenon was most 
recently reported by Wei & Smith (1986). Apparently, such three-dimensional 
phenomena are inescapable. However, they develop many boundary-layer thick- 
nesses downstream of separation. Wei & Smith report a distance of about 0.2 
cylinder diameters which even for Reynolds numbers as low as lo4 corresponds to at 
least 10 boundary-layer thicknesses. 

There is also some analytical evidence (Smith 1985) that many types of major 
instabilities can be triggered in the neighbourhood of separation. Moreover, the 
Tollmien-Schlichting mechanism can change form to produce other types of 
instabilities by means of three-dimensionality (Hall & Smith 1984). However, all 
these mechanisms are two-dimensional and linear in character. 

The present measurements were obtained in a region in which, based on all the 
studies cited above, steady flow should be nominally two-dimensional. Our findings 
indicate that unsteady flow in this region is also two-dimensional. 

3. Instrumentation and data acquisition 
A two-component LDV system was employed to measure two orthogonal velocity 

components. The system, shown schematically in figure 3, employs two sets of Bragg 
Cells for shifting two of the three beams by 40 and 60MHz respectively. Light 
scattered from seeding particles is received in a backward-scattering mode. Silicon 
carbide particles with diameters of a few microns were used for seeding. This ensured 
a data rate of about 500 samples per s. As a result, the signal thus generated was 
practically continuous. Example of raw data in the form of a time record will be 
presented and discussed in the next section. A single photo-multiplier was then used 
and the signal was down-mixed and filtered to provide instantaneous Doppler signals 
for two velocity components. The three beams entering the test section were 
arranged in such a way that the two velocity components measured were inclined by 
approximately 45’ with respect to the predominant direction of the flow, as shown 
in figure 4. The desired components were then calculated on-line by the laboratory 
computer. 

A special system was designed and constructed for traversing the measuring 
volume via mirrors. Such a system should meet some basic requirements : (i) it should 
allow very accurately controlled displacements ; (ii) it  should permit the displacement 
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‘-Sliding table 

FIQURE 3. Sliding table and traversing mechanism. 

beam 

FIQURE 4. Schematic of the three laser beams over the circular arc and the velocity components 
obtained by them (us, uI). 

of the measuring volume in two directions, parallel and perpendicular to the flow ; 
(iii) it should be controlled directly by the laboratory computer ; (iv) i t  should be free 
of vibrations; and finally (v) i t  should allow the rotation of the beams about their 
bisector, so that the accuracy of component measurements is consistent. The system 
we designed and constructed is shown schematically in figure 3. The train of TSI 
optics is mounted on a linear translator which allows the entire system to move in 
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FIGURE 5. Detail of the traversing mechanism. 

the x-direction. The parallel beams are then reflected twice from mirrors as shown in 
the figure and pass through a lens to converge at the measuring volume. The 
arrangement is very forgiving, because the distances between the three beams are 
preserved regardless of the inclinations of the two mirrors. Thus the angle of crossing 
of the beams at the measuring volume is an invariant of optical-element setting. The 
upper mirror together with the lens translate in the vertical direction to facilitate 
motion of the measuring volume along the y-axis. Details of the mirror tower 
are shown in figure 5.  Both motions are controlled by stepping motors interphased 
with the laboratory computer. In this way steps as small as 1/100mm can be 
implemented. Moreover, successive steps Ax and Ay may displace the measuring 
volume along any inclined path. 

The LDV signals are processed with TSI counters which are interphased directly 
to our laboratory computer. This computer (MINC-11) is the heart of the entire 
system. It controls all other instruments, it displaces the measuring volume, it checks 
continuously for the quality of the signal, it receives the data, it manipulates them 
on line and it stores them. The particular arrangement for the present project is 
shown schematically in figure 6. An outline of the flow chart of this operation is 
shown in figure 7. The computer performs conditional averaging of the periodic signal 
and then orders the stepping motors to proceed to the next position in space. 
According to the specific application, the LDV counters are interrogated by the 
computer to ensure proper operation of the system. The software provides for input 
from encoders which ensure that the micropositioning commands have been 
executed properly. 

The work described here was performed over a period of about four years. At first, 
measurements were obtained along verticals spaced 5 mm apart. Velocity com- 
ponents were then obtained successively. This phase of the work was reported in 
Telionis & Mathioulakis (1984). The majority of the data presented here were 
obtained along normals to the curved surface of the circular arc and at 19 streamwise 
stations (figure 2). In  this phase of the work (Mathioulakis & Telionis 1985), two 
components of the velocity were measured simultaneously. 
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The number of measuring points per station ranged between 30 and 60, while the 
smallest distance between two adjacent points was 0.2 mm. All the stations were 
located in the midspan region of the circular arc to ensure a two-dimensional flow 
field. The smallest distance along the wall between two stations was 5 mm, which 
corresponds to an angle of 0.011 rad. At each station, measurements were obtained 
in sequence, starting from the free stream and moving towards the surface of the 
model. The distance between two measuring points in the outer flow was about 1/10 
of the boundary-layer thickness. Inside the boundary layer, the measuring grid was 
thickened in order to capture the details of the velocity gradient changes. 

The measurements a t  a particular station came to an end when the probe volume 
touched the surface of the model, which was accompanied by an abrupt increase of 
the signal noise level. In this way, we were able to define the distance of the surface 
from the previous measuring point with an accuracy equal to the smallest 
displacement, which for this sequence of measurements was 0.2 mm. 

The free stream was oscillated with a non vanishing mean and the period of 
oscillation was fixed at  T = 4.8 s. This quantity was used to non-dimensionalize time. 
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FIQURE 7. Flow chart for data acquisition. 
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FIGURE 8. Power spectrum of the free-stream velocity indicating the driving frequency. 
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9. Selected velocity waveforms at z = 50 mm. Front to back correspond to y = 6, 5.2, 
4.8, 4.2, 3.8 and 2.8 mm. 

The mean value of the free-stream velocity U ,  was 16.5 cm/s. Based on the radius 
R of the circular arc, the mean Reynolds number Re,,, was 7.1 x lo4, while the 
frequency parameter wR/U, was 3.57. The waveform of the flow was very nearly 
sinusoidal for the range of the possible disturbing frequencies. A power spectrum of 
the signal is shown in figure 8. Clearly, the second harmonic is hardly detectable. 

The tunnel velocity may slowly drift and, on occasion, within a few hours deviated 
by 5% from the original setting. To ensure uniformity and eliminate the lowest- 
frequency disturbances in the free stream, the tunnel velocity was monitored by a 
third LDV channel, essentially playing the role of a free stream Pitot tube, which 
however provided a time-resolved signal. 

The initiation of data acquisition was triggered by a pulse sent to the laboratory 
computer at a fixed opening of the rotating vane. The LDV signals were then 
conditionally averaged. For each velocity component, 160 instantaneous values per 
period were stored. 

The reader will find extensive documentation of the data acquisition system in 
Mathioulakis (1985). 

4. Results and discussion 
Two coordinate systems were used: curvilinear orthogonal (x,y) with its x- 

coordinate aligned with the surface of the model and Cartesian ([,v), where 6 was 
parallel to the free stream (see figure 2). The velocity components in the (2, y)-system 
were denoted by u, w where u was parallel to the wall, while in the (6, v)-system the 
components were denoted by U ,  V where U was parallel to the free stream. The 
station x = 0 (or 6 = 0) corresponds to the joint of the flat plate with the circular arc. 
Waveforms of velocity a t  different elevations constructed of raw digital data are 
presented in figure 9. It is apparent that the digital data generate a nearly continuous 
signal. These waveforms are again very nearly sinusoidal. To demonstrate this, the 
experimental records were analysed by an FFT routine. This routine returned the 
mean value 0, as well as the amplitude of each harmonic: 

80 

U ( z ,  y, t )  = U ( x ,  y) + C [a,@, y) sin w, t+ b , ( z ,  y) cos 0, t ] ,  (1) 
n-1 

where w, = no. Since the terms a,(x, y), b,(x, y) for n >/ 2 were much smaller than 
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FIQURE 10. Contours of velocity amplitude normalized by local free-stream amplitude. 

a,(x, y), b,(x,  y )  (less than 5 %) here we present data only for the amplitude and the 
first harmonic 

U ( x ,  y ,  t )  = U(G y) + a(x, y) cos (wt - $1, (2) 

where 
(3) 

In figure 10, we show contours of constant amplitude a ,  non-dimensionalized by 
the local free-stream amplitude. The free-stream amplitude normalized by the free- 
stream mean velocity was 5 YO. In  figure 10, we observe a classical feature of this type 
of flows: amplification of the oscillation as the boundary layer is penetrated. The 
amplification increases drastically as separation is approached. This was predicted 
numerically by Telionis & Romaniuk (1978) and experimentally by Mezaris & 
Telionis (1980). In  the downstream direction, the peak of the amplitude moves away 
from the wall, in contrast to the case of oscillatory flow over a flat plate (Lighthill 
1954), where the amplitude overshoots approach the wall for increasing wx/U, .  In 
our case, the amplitude overshoots downstream of separation are located within the 
free shear layer. 

It is also observed that the overshoots are amplified continuously in the direction 
of increasing x, with a maximum value of 5 times larger than the local outer flow 
amplitude. Mezaris & Telionis (1980) reported overshoots about 10 times larger than 
the amplitude of the outer flow. This difference may be attributed to the fact that 
their disturbance was introduced locally into the flow. 

Another characteristic feature of the flow is the change of the phase angle 4 across 
the boundary layer. This is the phase difference between the local response and the 
free-stream velocity. In figure 11 we plot the variation of 4 along y at 16 stations 
(3-18). We notice that close to the wall and at stations 11-18 (where the flow is 
reversed), there is a large phase lead (maximum value of looo), while in the outer part 
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of the boundary layer, there is a small phase lag (maximum absolute value of 20'). 
A simple explanation of this behaviour can be based on the fact that  as we approach 
the wall, the inertia effects become less important compared to the pressure gradient. 
Tsahalis & Telionis (1974) reported a maximum phase lead of 45' and a phase lag of 
the order of 10' but they investigated numerically the flow upstream and up to 
separation only. 

The velocity components parallel and perpendicular to the wall were normalized 
by the local time mean of the outer flow at the edge of the boundary layer lJe. Then 
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they were smoothed in the y-direction by a cubic spline. Using the same routine we 
were able to obtain the smoothed velocity components a t  equispaced locations 
(Ay = 0.4 mm) in the y-direction. Their smoothed values u, v were used in our 
calculations for further reduction of the data. In  figure 12 we show an example of raw 
data and the corresponding smoothed profiles. Figure 13 displays four instantaneous 
vector fields based on the smoothed u and v velocity profiles. A movie film has 
actually been prepared showing the variation of the velocity field in time. The film 
is available for loan upon request. 

The boundary-layer thickness S(x) was defined as the distance from the wall where 
u takes the value 0.95, while the displacement thickness 6* was defined by the 
equation 

(1 -u(x, y, t ) )  dy, (4) 

where all lengths were non-dimensionalized by the radius R of the circular arc. The 
above integration was performed over the smoothed profiles, using Simpson's rule. 
I n  figure 14 we show how 6* changes in time at 19 stations. 

Vorticity was calculated according to the formula 

where w was normalized by B J R .  Contours of constant vorticity w/100 are shown 
in figure 15 for eight time instants. The vortical layer fluctuates spacially, resembling 
a flapping tuft. The physical picture resembles a sheet which wraps around the body 
but separates from it  at a point and periodically oscillates from then on, like a 
flapping flag. A more precise description of the phenomenon based on numerical 
calculations using the data obtained here follows in a later section. 

5. Data processing 
An attempt was made to evaluate the distribution of the static pressure in the flow 

field, by substituting the experimental velocity data in the Navier-Stokes equations. 
In  polar coordinates, these are 

au u au au uv 
at i + y a x  a3 i + y  
-+-- +v-+- 

av av av u2 

at i + y a x  ay I + ~  
-+-- +v--- 

where 

1 1 - 2  
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FIQURE 15(a,b) .  For caption see page 321. 
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Symbols with an asterisk denote dimensional quantities. The derivatives of both 
components in the x- and y-directions have been expressed by central differences, 
and the time derivatives by forward differences. For example &/ax and aulat were 
calculated by 

and 



Velocity and vorticity distributions in periodic separating laminar flow 323 

x(mm) 30 

Station 4 

I 

40 

6 

50 

8 

L 

- 

70 80 90 100 

12 14 16 18 

0.5 0 
SMleof term 6-1 

0.25 

- LLLL 
FIQURE 17. Profiles of uv/l+ y at stations 4-18 and (a) t = iT, ( b )  T. 

where the symbols i, m, j represent the grid order of x, y and t ,  respectively. Some 
terms in (6 )  and (7) were of the order iO-3-iO-5. We thus found from our 
experimental data that these equations can be written with great accuracy as 

applax 1 azu au u au au uv 
+-7, at i+Yax ay i + y  i + y  Reay (11) -+-- +v-+- = -- 
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FIGURE 18. Profiles of ( l /Re)  (a2u/i3yz) at stations 4-18 and (a) t = $T, ( b )  T. 

In other words, the terms involving the second velocity derivatives, a2u/ax2 and 
a2v/ax2 are 3-4 orders of magnitude smaller, a finding which is in agreement with 
Varty & Currie (1984). 

Examples of the profiles of terms of the above equations, for two time instants, 
t = iT and T are shown in figures 16, 17 and 18. In  these figures the instantaneous 
value of displacement thickness is marked by a short horizontal line segment for 
comparison. 
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FIGURE 19. Wall pressure pw and wall shear 7, = au/ayl,-,, at t = 4T (stations 4-18). 

It should be emphasized here that discrepancies easily appear in this type of 
calculations. The quantity v is very small and very hard to measure. Moreover, x- 
derivatives are also small, and even harder to estimate. It turned out that errors as 
large as 20-30% were found in efforts to verify the validity of the continuity 
equation. Profiles of terms like au/ax appeared to be very irregular if estimated by 
differences in the x-direction. Instead, it was found that more consistent data could 
be obtained by estimating av/ay and then using the continuity equation to calculate 

The term applay was then calculated from (12). This quantity is very small and as 
a result extremely small errors lead to erratic behaviour of corresponding profiles. 
Plots of ap/ay are included in Mathioulakis (1985). The magnitudes of some 
quantities calculated are within the estimated error. Surprisingly, we noticed that 
most of the terms of the equations that we calculated appear more consistent near 
the wall. We noticed, for example, that applay is consistently negligible in the region 
y < S* upstream of the 14th station at t = $T and upstream of the 12th station at 
t = $'. However, downstream of these stations (wake region) this does not hold. 

Another example of the fact that  near the wall, measurements and calculations 
were more consistent is the distribution of wall pressure. Employing (11) at y = 0, 
we can obtain the wall pressure p, by integrating numerically the equation 

aulax. 

This integration was performed between stations 4 and 18. The error estimated in 
calculating these quantities was less than 10Y0 of the largest displayed value. 
Apparently, the quantity a2u/ay2 was estimated with greater accuracy near the wall 
than away from it. A further explanation of the quality of the data hinges around the 
technique of establishing the position of the wall with respect to the measuring 
volume, or equivalently the zero value of the measured quantities u and v. This was 
done by a linear extrapolation of the last three successful measurements before the 
laser beams hit the wall. This process was performed automatically by the computer. 
The variation of p, along x a t  t = T and T is shown in figure 19 along with the 
variation of au/ayll,,o. Further smoothing is of course achieved by integration along 
the x-direction. We notice that p ,  starts increasing three or four stations upstream 
of the point of zero skin friction. 
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FIQURE 20. Time variations of the location of zero skin friction z,,, the displacement thickness 
S*, and the centre of vorticity yc. 

6. Discussion 
Separation is defined by aerodynamicists as the location on the surface of the body 

where the inviscid flow, the ‘outer flow’ in the terminology of inner and outer 
expansions, ceases to follow the body and turns into the main stream. This concept 
is meaningful only in the limit of Re co. For finite Reynolds numbers, the process 
is gradual and the above definition is ambiguous. 

A variety of symptoms have been employed experimentally to signal separation 
(Sears & Telionis 1975; Williams 1977; Shen 1978; Cousteix 1986). Lacking’ a 
uniformly accepted definition of unsteady separation, experimentalists usually 
compare the behaviour of the symptoms. Didden & Ho (1985) specifically discuss the 
symptoms of (i) thickening of the boundary layer, (ii) ejection of vorticity and (iii) 
zero shear stress. They go one step further and find that the separation speed in the 
Moore-RottSears (MRS) criterion, see discussion in Sears & Telionis (1974, equals 
the speed of the local peak of the displacement thickness. Their evidence also 
indicates that secondary vortex formation or the formation of a local shear layer is 
‘the generic flow module in the unsteady separation phenomenon ’. The Didden & Ho 
experiments are special in character because they involve a pressure gradient which 
is favourable everywhere in the mean. Moreover, their displacement thickness has a 
maximum because their separated layer reattaches on the wall. In  our case, and 
perhaps in all cases of massive separationt, there is some mean adverse pressure 
gradient and as a result, the displacement thickness grows continuously with 
downstream distance. There is no maximum. 

The excursions of the point of zero skin friction are plotted in figure 20. In the same 
figure we plot for comparison the displacement thickness a t  the location of x = 0.160, 
which represents the fluctuations of the free shear layer. Skin friction leads the outer 
flow by about 45’. This is in agreement with earlier numerical findings (Tsahalis & 
Telionis 1974). 

A parameter indicative of the validity of the boundary-layer assumption is the 
quantity U / O ,  the ratio of the two mean velocity components. Contours of this ratio 
are shown in figure 2 l (a ) .  Asymptotic theories have recently indicated (see the 
review of Smith 1986) that  in a coordinate system aligned with the displaced flow, 

t Some authors prefer to use the term ‘catastrophic’ separation for separated regions that are 
not closed. 
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FIGURE 21. Contours of u,/w,. (a) with respect to a polar system; ( b )  with respect to a system 

aligned with the centre-of-vorticity curve. 

the boundary-layer approximation is uniformly valid throughout separation. To 
demonstrate this we plotted in figure 21 ( b )  the Ia/al ratio with respect to a coordinate 
system displaced off the body by the displacement thickness. The present data 
provide strong evidence in favour of the earlier asymptotic results. The ratio is 
very large along the attached boundary layer and the separating shear layer. 

Asymptotic theories have concentrated on steady separating flow. Unsteadiness 
has been accounted for only in the form of hydrodynamic instabilities and their 
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possible growth (Smith 1985). It is therefore not possible to undertake a comparison 
with the present case, where the disturbance is introduced in the outer flow in a 
periodic fashion. However, a qualitative comparison is possible and turns out to be 
quite favourable. For example, theory predicts that the separation line for subsonic 
flow is concave upward (Smith 1986). This is clearly the case for our experimental 
data. Moreover, triple-deck theory predicts that the pressure levels off at a distance 
of approximately 8-9 units measured in terms of the stretched variable X = Re3Ia 
(x-xSep). In the present case we estimate from figure 19 that in the mean, the 
pressure levels off a t  approximately the 15th station which was calculated to be 
x x 7. 

A classical relationship between circulation r and vorticity 52 dictates that 

r = JJQU, (14) 

where A is the area contained by the contour of integration of the circulation 
integral. Howarth (see discussion in Saffman & Schatzman 1982) has demonstrated 
that if the area is chosen appropriately, the rate of shedding of vorticity at separation 
becomes 

which within the boundary-layer approximation yields 

where u, is the edge velocity a t  separation. This simple formula has been used 
extensively in the literature of discrete vortex dynamics. 

Similar arguments have been presented by many theoreticians (for example, 
Birkhoff 1953; Clements 1973; Sarpkaya 1975; Saffman & Schatzman 1982) to 
estimate the strength of periodically shed vortex structures. Viewing the shedding 
process macroscopically, many experimentalists have indicated that (16) is not 
accurate. It was argued that in practice vorticity is shed at  a considerably larger rate 
(Roshko 1953,1954) but, on the other hand, the rate of vorticity shedding is decreased 
because of vortex annihilation (Fage & Johansen 1927). This is due to vorticity of 
opposite sign which is mixed in the free-shear layer from downstream. Our 
experimental data indicate that (16) is valid within an error of less than 5%. 

In all numerical efforts to calculate the strength of the discrete vortex via (16), the 
position and initial velocity of the vortex are arbitrarily assigned. The present group 
is working on an interactive numerical approach which will allow the calculation of 
this necessary information. In  the present paper we have taken the first steps 
towards measuring the flux of vorticity as well as the direction and rate with which 
vorticity is ejected into the flow. 

vorticity profile respectively : 
Let Q, and yc be an average of vorticity across 

I rs 
Q c = -  Qdy, :.Io 

a layer and the centroid of the 

(17) 

Y C Q C  = p Y  dY. 
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Station no. 1 2 3 4 5 6 
%I% 0.008 0.001 0.007 1 0.0102 0.0156 0.0196 

Station no. 7 8 9 10 1 1  12 
V,l% 0.0245 0.0286 0.0356 0.0426 0.0476 0.0538 

Station no. 13 14 15 16 17 18 
%I% 0.0599 0.0685 0.0745 0.0784 0.0848 0.0919 

TABLE 1 .  The normal component of the velocity of vortex shedding. 

3 x lo-* 
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X 

FIGURE 22. Centre of vorticity versus z and t (stations 1-18) : 0,  t = iT; A, iT; + , iT; z, +T; 0, 
!Ti x, -@"; T ,  $T; Z, 1T. 
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The convection velocity of the vorticity could be defined as follows 

D .  S. Mathioulakis and D.  P .  Telionis 

u, = - r Q u d y ,  1 

Q, 0 

We have estimated all the above quantities based on our experimental data for 
many instances and found that the quantity uJu, takes values in the attached as 
well as the separated domain which, in the mean, vary between 0.45 and 0.51. There 
is a small periodic fluctuation about this value which is a t  most equal to 0.08. I n  
other words vorticity is shed with a velocity approximately equal to half of the edge 
velocity. This is a straightforward analytical result of (16) if one approximates 
vorticity by the quantity aulay. This finding therefore provides further evidence that 
the boundary-layer approximation is valid throughout separation. 

The normal component of the velocity of vortex shedding, v,/u,, is about one order 
of magnitude smaller than u,/u, but increased monotonically with downstream 
distance. I ts  values are given in table 1. 

Finally, the centre of vorticity defines a curve which could be termed the centre 
line of vorticity. Instantaneous positions of these curves are shown in figure 22. The 
behaviour of the vorticity centreline is very similar to the displacement thickness. 
To demonstrate this we have plotted the time variation of yc a t  the 12th station in 
figure 20, where the displacement thickness variation is also shown. 

7. Conclusions 
Much argument and discussion has appeared in the literature on the controversy 

of coincidence or not of the points of zero skin friction and unsteady separation. The 
work presented in this paper is not intended to offer new evidence on this topic, 
simply because the amplitude of the unsteady oscillation is small. We did not observe 
any large-scale departures of the point of separation and the point of zero skin 
friction. However, it appears that the fluctuations of the free shear layer lead the 
other separation symptoms. 

The reduced frequency of the outer oscillation was rather large. It therefore may 
appear that for small amplitudes and large frequencies the flow barely deviates from 
its mean. The motion then should be quasi-steady. This is not at all the case. Our 
results indicate deviations in the angle of separation, amplitude overshoots of the 
order of 500% and phase differences of the order of 100". 

The main contribution of this publication is a set of very careful measurements on 
a very thick measuring grid for a well-controlled separation. We offer here a well- 
documented case with measurements of both instantaneous velocity components 
well upstream and downstream of the point of separation. 

We have examined carefully the terms of the Navier-Stokes equations, calculated 
using our experimental data. We conclude here that, in agreement with recently 
published analytical results on the topic, the boundary-layer approximation is valid, 
within an error of lo%, up to and beyond separation. Moreover, and again as 
predicted by the late Professor K.  Stewartson (Stewartson 1974), the level of 
approximation does not change if one refers to coordinates aligned with the 
displacement thickness of the boundary layer. In  the terminology of computations, 
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the boundary-layer approximation should be valid if the calculation is interacted 
with the outer flow. These statements are true for steady as well as unsteady 
flow. 

A careful observation of figure 22 indicates that the vorticity centrelines curve 
smoothly as the flow turns away from the wall but then realign themselves along 
very nearly straight lines. Tangents to these straight lines project back and hit the 
wall. These points provide an arbitrary but reasonable definition of the point of 
separation. It remains to prove that this point would be independent of the Reynolds 
number. Incidentally, based on this definition, the excursions of the point of 
separation are contained between the points x = 0.109 and 0.1 14. In other words, for 
the high-frequency oscillations under consideration, the point of separation is rather 
insensitive to periodic disturbances, in agreement with the findings of Despard & 
Miller (1971). 

The amount of our actual experimental data is at least 10 times more than we 
could fit into the few figures contained in this paper. The reader will find more 
detailed information in the Ph.D. dissertation of one of us (Mathioulakis 1985). We 
will also be happy to supply to anyone who requests them all the data that we 
obtained on tape. 

This work was supported by the US Air Force Office of Scientific Research Grant 
No. 82-0228 and was monitored by Major Michael S. Francis. 

R E F E R E N C E S  

ARENA, A. V. & MUELLER, T. J. 1978 Visualization of separation and subsequent transition near 
the leading edge of an airfoil. NASA Conf. 2045, Part 2, Paper 35. 

BERNAL, L. P. 1981 The coherent structure of turbulent mixing layers. I. Similarity of the 
primary vortex structure. 11. Secondary streamwise vortex structure. Ph.D. thesis, California 
Institute of Technology, Pasadena, CA. 

BIRKHOFF, G. 1953 Formation of vortex streets. J. AppZ. Phys. 24, 98-103. 

CARR, L. W., MCALISTER, K. W. & MCCROSKEY, W. J. 1977 Analysis of the development of 

CLEMENTS, R. R. 1973 An inviscid model of two-dimensional vortex shedding. J. Fluid Mech. 57, 

COUSTEIX, J. 1986 Three-dimensional and unsteady boundary-layer computations. Ann. Rev. 
Fluid Mech. 18, 173-196. 

DESPARD, R. A. & MILLER, J .  A. 1971 Separation in oscillating boundary-layer flows. J. Fluid 
Mech. 47, 21-31. 

DIDDEN, N. & Ho, C.-M. 1985 Unsteady separation in a boundary layer produced by an impinging 
jet. J. Fluid Mech. 160, 235-256. 

DRYDEN, H. L. t ABBOTT, I. H. 1948 The design of low-turbulence wind tunnels. NACA Tech. 
Note 1755. 

FACE, A. & JOHANSEN, F. C. 1927 The flow of air behind an inclined flat plate of infinite span. 
Aero. Res. Counc. R & M 1104, 81-106. 

GERRARD, J. H. 1978 The wakes of cylindrical bluff bodies at low Reynolds number. Phil. Trans. 

HALL, P. & SMITH, F. T. 1984 On the effects of nonparallelism, three dimensionality, and more 
interaction on nonlinear boundary-layer stability. Stud. Appl. Maths 70, 91-120. 

Ho, C.-M. & HUERRE, P. 1984 Perturbed free-shear layers. Ann. Rev. Fluid Mech. 16, 365- 
424. 

KONRAD, J. H. 1976 An experimental investigation of mixing in two-dimensional turbulent shear 
flows with applications to diffusion-limited chemical reactions. Project SQUID Tech. Rep. CIT- 

dynamic stall based on oscillating airfoil experiments. NASA Tech. Note D-8382. 

321-336. 

R .  SOC. L d .  A288, 351-382. 

8-PU. 



332 D .  S.  Mathioulakis and D.  P .  Telionis 

KOROMILAS, C. A. & TELIONIS, D. P. 1980 Unsteady laminar separation - an experimental study. 
J .  Fluid Mech. 95, 347-384. 

LIGHTHILL, M. J. 1954 The response of laminar skin friction and heat transfer to fluctuations in 
the stream velocity. Proc. R .  SOC., Lond. A224, 1-23. 

LOEHRKE, R. I. & NAGIB, H. M. 1976 Control of free-stream turbulence by means of honeycombs: 
a balance between suppression and generation. Trans. ASME I :  J .  Fluids Engng 98, 343- 
353. 

LUDWIG, G. R. 1964 An experimental investigation of laminar separation from a moving wall. 
AIAA Paper 6 4 4 .  

MATHIOULAKIS, D. S. 1985 Vorticity shedding over two-dimensional bodies. Ph.D. thesis, Virginia 
Polytechnic Institute & State University. 

MATHIOULAKIS, D. S. & TELIONIS, D. P. 1985 Velocity and vorticity measurements around 
laminar separation. In Numerical and Physical Aspects of Aerodynamic Flows (ed. T. Cebeci), 
pp. 7.3-7.12. California State University 

MCCROSKEY, W. J.  1971 Dynamic stall on a helicopter rotor blade. Proc. SQUZD Workshop, 
Atlanta (ed. F. J. Marshall), pp. 346-350. 

MCCROSKEY, W. J. 1977 Some current research in unsteady fluid dynamics -the 1976 Freeman 
Scholar Lecture. Trans. ASME I: J .  Fluids Engng 99, 8-38. 

MEZARIS, T. B. & TELIONIS, D. P. 1980 Visualization and measurement of separating oscillatory 
laminar flow. AIAA Paper 80-1420. 

MEZARIS, T. B., TELIONIS, D. P., BARBI, C. & JONES, G. S. 1987 Separation and wake of pulsating 
laminar flow. Proc. R .  Soc. Lond. (in press). 

MICHALKE, A. 1965 On spatially growing disturbances in an inviscid shear layer. J .  Fluid Mech. 

MOORE, F. K. 1958 On the separation of the unsteady boundary layer. In Boundary Layer 
Research (ed. H. Gortler), pp. 296-310. Springer. 

ROSHKO, A. 1953 On the development of turbulent wakes from vortex streets. NACA Tech. Note 
2913. 

ROSHKO, A. 1954 On the drag and shedding frequency of two-dimensional bluff bodies. NACA 
Tech. Note 3169. 

ROTT, N. 1956 Unsteady viscous flow in the vicinity of a stagnation point. Q. Appl. Maths 13, 
44445 1.  

RUITER, G. H., NAGIB, H. M. & FEJER, A. A. 1971 Unsteady boundary-layer separation over 
oscillating airfoils. Proc. SQUZD Workshop, Atlanta (ed. F. J. Marshall) pp. 423425. 

SAFFMAN, P. G. & SCHATZMAN, J. C. 1982 An inviscid model for the vortex-street wake. J .  Fluid 
Mech. 122, 467486. 

SARPKAYA, T. 1975 An inviscid model of two-dimensional vortex shedding for transient and 
asymptotically steady separated flow over an inclined plate. J .  Fluid Mech. 68, 109-128. 

SCHRAUB, F. A., KLINE, S. J., HENRY, J., RUNSTADLER, P. W. & LITTEL, A. 1965 Use of hydrogen 
bubbles for quantitative determination of time dependent velocity fields in low-speed water 
flows. Trans. ASME D: J .  Basic Engng 87, 429-444. 

SCHUBAUER, G. B., SPANGENBERO, W. G. & KLEBANOFF, P. S. 1948 Aerodynamic characteristics 
of damping screens. NASA Tech. Note 2001. 

SEARS, W. R. 1956 Some recent developments in airfoil theory. J .  Aero. Sci. 23, 490499. 
SEARS, W. R. & TELIONIS, D. P. 1975 Boundary-layer separation in unsteady flow. SZAM J .  

Appl. Maths 28, 215-235. 
SHEN, S. F. 1978 Unsteady separation according to the boundary-layer equation. Adv. Appl. 

Mech. 18, 177-220. 
SIMPSON, R.  L. 1981 A review of some phenomena in turbulent flow separation. Trans. ASME I :  

SMITH, F. T. 1985 Nonlinear effects and non-parallel flows; the collapse of separating motion. 

SMITH, F. T. 1986 Steady and unsteady boundary-layer separation. Ann. Rev. Fluid Mech. 18, 

STEWARTSON, K. 1974 Multi-structured boundary layers on flat plates and related bodies. Adv. 

23, 521-544. 

J .  Fluids Engng 103, 20-33. 

United Technologies Research Center, Engng Rep. UTRC85-55. 

197-220. 

Appl. Mech. 14, 145-239. 



Velocity and vorticity distributions in periodic separating laminar flow 333 

TAN-ATICHAT, J., NAGIB, H.  M. & LOEHRKE, R. I. 1982 Interaction of free-stream turbulence with 
screens and grids: a balance between turbulence scales. J .  Fluid Mech. 114, 501-528. 

TELIONIS, D. P. 1979 Review -unsteady boundary layers, separated and attached. Trans. ASME 
I: J .  Fluids E n g q  101, 2943 .  

TELIONIS, D. P. & KOROMILAS, C. P. 1978 Flow visualization of transient and oscillatory 
separating laminar flows. In Nonsteady Fluid Dynamics (ed. D. E. Crow & J.  A. Miller), pp. 

TELIONIS, D. P. & MATHIOULAKIS, D. S. 1984 On the shedding of vorticity at separation. In  
Unsteady Separated Flows (ed. M. W. Luttges), pp. 106-116. AFOSR, SRL, University of 
Colorado. 

TELIONIS, D. P., MATHIOULAKIS, D. S., KIM, B. K. & JONES, G. J .  1986 Calibration of the ESM 
Water Tunnel. VPI tSU Eng. Rep. VPI-E-86-23. 

TELIONIS, D. P. & ROMANIUK, M. S. 1978 Velocity and temperature streaming in oscillating 
boundary layers. AIAA.  J .  16, 488495. 

TSAHALIS, D. TH. & TELIONIS, D. P. 1974 Oscillating laminar boundary layers and unsteady 
separation. AZAA J .  12, 1469-1475. 

VARTY, R. L. & CURRIE, I. G. 1984 Measurements near a laminar separation point. J .  Fluid Mech. 
138, 1-19. 

VIDAL, J.  R. 1959 Research on rotating stall in axial-flow compressors, part 111. WADC Td-59- 
75. 

WEI, T. t SMITH, C. R. 1986 Secondary vortices in the wake of circular cylinders. J .  Fluid Mech. 
169, 513-533. 

WERLE, H. 1973 Hydrodynamic flow visualization. Ann. Rev. Fluid Mech. 5 ,  361-382. 
WIGELAND, R. A., AHMED, M. BE NAGIB, H. M. 1978 Management of swirling flows with 

WILLIAMS, J. C. 1977 Incompressible boundary layer separation. Ann. Rev. Fluid Mech. 9, 113- 

WTNKELMANN, A. E. t BARLOW, J .  B. 1980 Flowfield model for a rectangular planform wing 

WINKELMANN, A. E., NQO, H. T. & DESAIFE, R. C. 1982 Some observation of separating flow on 

21-32. ASME. 

application to wind tunnel design. AZAA J .  16, 1125-1 131. 

144. 

beyond stall. AZAA J .  18, 1006-1008. 

finite wing. AZAA Paper 82-0346. 


